Goto

Collaborating Authors

 Guangxi Province


SADDE: Semi-supervised Anomaly Detection with Dependable Explanations

arXiv.org Artificial Intelligence

Semi-supervised learning holds a pivotal position in anomaly detection applications, yet identifying anomaly patterns with a limited number of labeled samples poses a significant challenge. Furthermore, the absence of interpretability poses major obstacles to the practical adoption of semi-supervised frameworks. The majority of existing interpretation techniques are tailored for supervised/unsupervised frameworks or non-security domains, falling short in providing dependable interpretations. In this research paper, we introduce SADDE, a general framework designed to accomplish two primary objectives: (1) to render the anomaly detection process interpretable and enhance the credibility of interpretation outcomes, and (2) to assign high-confidence pseudo labels to unlabeled samples, thereby boosting the performance of anomaly detection systems when supervised data is scarce. To achieve the first objective, we devise a cutting-edge interpretation method that utilizes both global and local interpreters to furnish trustworthy explanations. For the second objective, we conceptualize a novel two-stage semi-supervised learning framework tailored for network anomaly detection, ensuring that the model predictions of both stages align with specific constraints. We apply SADDE to two illustrative network anomaly detection tasks and conduct extensive evaluations in comparison with notable prior works. The experimental findings underscore that SADDE is capable of delivering precise detection results alongside dependable interpretations for semi-supervised network anomaly detection systems. The source code for SADDE is accessible at: https://github.com/M-Code-Space/SADDE.


An Innovative CGL-MHA Model for Sarcasm Sentiment Recognition Using the MindSpore Framework

arXiv.org Artificial Intelligence

The pervasive use of the Internet and social media introduces significant challenges to automated sentiment analysis, particularly for sarcastic expressions in user-generated content. Sarcasm conveys negative emotions through ostensibly positive or exaggerated language, complicating its detection within natural language processing tasks. To address this, we propose an innovative sarcasm detection model integrating Convolutional Neural Networks (CNN), Gated Recurrent Units (GRU), Long Short-Term Memory (LSTM), and Multi-Head Attention mechanisms. The CNN component captures local n-gram features, while GRU and LSTM layers model sequential dependencies and contextual information. Multi-Head Attention enhances the model's focus on relevant parts of the input, improving interpretability. Experiments on two sarcasm detection datasets, Headlines and Riloff, demonstrate that the model achieves an accuracy of 81.20% and an F1 score of 80.77% on Headlines, and an accuracy of 79.72% with an F1 score of 61.39% on Riloff, outperforming traditional models. These results validate the effectiveness of our hybrid approach for sarcasm detection in social media texts.


Dynamic Threshold-based Two-layer Online Unsupervised Anomaly Detector

arXiv.org Artificial Intelligence

The proliferation of the Internet of Things (IoT) has heightened the vulnerability to cyber threats, making it imperative to develop Anomaly Detection Systems (ADSs) capable of adapting to emerging or novel attacks. Prior research has predominantly concentrated on offline unsupervised learning techniques to protect ADSs, which are impractical for real-world applications. Furthermore, these studies often rely heavily on the assumption of known legitimate behaviors and fall short of meeting the interpretability requirements in security contexts, thereby hindering their practical adoption. In response, this paper introduces Adaptive NAD, a comprehensive framework aimed at enhancing and interpreting online unsupervised anomaly detection within security domains. We propose an interpretable two-layer anomaly detection approach that generates dependable, high-confidence pseudo-labels. Subsequently, we incorporate an online learning mechanism that updates Adaptive NAD using an innovative threshold adjustment method to accommodate new threats. Experimental findings reveal that Adaptive NAD surpasses state-of-the-art solutions by achieving improvements of over 5.4% and 23.0% in SPAUC on the CIC-Darknet2020 and CIC-DoHBrw-2020 datasets, respectively. The code for Adaptive NAD is publicly available at https://github.com/MyLearnCodeSpace/Adaptive-NAD.


TourLLM: Enhancing LLMs with Tourism Knowledge

arXiv.org Artificial Intelligence

Recently, large language models (LLMs) have demonstrated their effectiveness in various natural language processing (NLP) tasks. However, the lack of tourism knowledge limits the performance of LLMs in tourist attraction presentations and travel planning. To address this challenge, we constructed a supervised fine-tuning dataset for the culture and tourism domain, named Cultour. This dataset consists of three parts: tourism knowledge base QA data, travelogues data, and tourism diversity QA data. Additionally, we propose TourLLM, a Qwen-based model supervised fine-tuned with Cultour, to improve the quality of the information provided about attractions and travel planning. To evaluate the performance of TourLLM, we employed both automatic and human evaluation, and we proposed a human evaluation criterion named CRA (Consistency, Readability, Availability). The experimental results demonstrate the effectiveness of the responses generated by the TourLLM. Our proposed Cultour is accessible at https://github.com/mrweiqk/Cultour.


Digital Twin-Empowered Task Assignment in Aerial MEC Network: A Resource Coalition Cooperation Approach with Generative Model

arXiv.org Artificial Intelligence

To meet the demands for ubiquitous communication and temporary edge computing in 6G networks, aerial mobile edge computing (MEC) networks have been envisioned as a new paradigm. However, dynamic user requests pose challenges for task assignment strategies. Most of the existing research assumes that the strategy is deployed on ground-based stations or UAVs, which will be ineffective in an environment lacking infrastructure and continuous energy supply. Moreover, the resource mutual exclusion problem of dynamic task assignment has not been effectively solved. Toward this end, we introduce the digital twin (DT) into the aerial MEC network to study the resource coalition cooperation approach with the generative model (GM), which provides a preliminary coalition structure for the coalition game. Specifically, we propose a novel network framework that is composed of an application plane, a physical plane, and a virtual plane. After that, the task assignment problem is simplified to convex optimization programming with linear constraints. And then, we also propose a resource coalition cooperation approach that is based on a transferable utility (TU) coalition game to obtain an approximate optimal solution. Numerical results confirm the effectiveness of our proposed approach in terms of energy consumption and utilization of resources.


Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction

arXiv.org Artificial Intelligence

Stock market plays an important role in the economic development. Due to the complex volatility of the stock market, the research and prediction on the change of the stock price, can avoid the risk for the investors. The traditional time series model ARIMA can not describe the nonlinearity, and can not achieve satisfactory results in the stock prediction. As neural networks are with strong nonlinear generalization ability, this paper proposes an attention-based CNN-LSTM and XGBoost hybrid model to predict the stock price. The model constructed in this paper integrates the time series model, the Convolutional Neural Networks with Attention mechanism, the Long Short-Term Memory network, and XGBoost regressor in a non-linear relationship, and improves the prediction accuracy. The model can fully mine the historical information of the stock market in multiple periods. The stock data is first preprocessed through ARIMA. Then, the deep learning architecture formed in pretraining-finetuning framework is adopted. The pre-training model is the Attention-based CNN-LSTM model based on sequence-to-sequence framework. The model first uses convolution to extract the deep features of the original stock data, and then uses the Long Short-Term Memory networks to mine the long-term time series features. Finally, the XGBoost model is adopted for fine-tuning. The results show that the hybrid model is more effective and the prediction accuracy is relatively high, which can help investors or institutions to make decisions and achieve the purpose of expanding return and avoiding risk. Source code is available at https://github.com/zshicode/Attention-CLX-stock-prediction.


How NTSB would approach investigation into China Eastern crash with 132 on board

FOX News

A China Eastern flight carrying 132 people crashed Monday. A domestic Chinese flight with 132 passengers plummeted into the mountains of southern China on Monday, likely leaving all passengers dead and investigators launching a probe into the cause. Chinese President Xi Jinping has instructed the country's emergency services to "organize a search and rescue" operation and "identify the causes" of the Boeing 737-800 crashing, according to state media. Former chairman of the National Transportation Safety Board Jim Hall told Fox News Digital on Monday that it would be "irresponsible" to speculate what caused the crash so soon after the incident, but described how the NTSB carries out investigations into major commercial crashes. This screen grab taken from video from The Paper and received via AFPTV on March 21, 2022 shows ambulances turning off onto a side road upon arrival after a China Eastern reportedly crashed in Teng County in Wuzhou City, Guangxi province.


Proceedings of the 13th International Conference on Automated Deduction in Geometry

arXiv.org Artificial Intelligence

Automated Deduction in Geometry (ADG) is a forum to exchange ideas and views, to present research results and progress, and to demonstrate software tools at the intersection between geometry and automated deduction. Relevant topics include (but are not limited to): polynomial algebra, invariant and coordinate-free methods; probabilistic, synthetic, and logic approaches, techniques for automated geometric reasoning from discrete mathematics, combinatorics, and numerics; interactive theorem proving in geometry; symbolic and numeric methods for geometric computation, geometric constraint solving, automated generation/reasoning and manipulation with diagrams; design and implementation of geometry software, automated theorem provers, special-purpose tools, experimental studies; applications of ADG in mechanics, geometric modelling, CAGD/CAD, computer vision, robotics and education. Traditionally, the ADG conference is held every two years. The previous editions of ADG were held in Nanning in 2018, Strasbourg in 2016, Coimbra in 2014, Edinburgh in 2012, Munich in 2010, Shanghai in 2008, Pontevedra in 2006, Gainesville in 2004, Hagenberg in 2002, Zurich in 2000, Beijing in 1998, and Toulouse in 1996. The 13th edition of ADG was supposed to be held in 2020 in Hagenberg, Austria, but due to the COVID-19 pandemic, it was postponed for 2021, and held online (still hosted by RISC Institute, Hagenberg, Austria), September 15-17, 2021 (https://www.risc.jku.at/conferences/adg2021).


Potential early diagnostic biomarkers of sepsis

#artificialintelligence

Objective: The goal of this article was to identify potential biomarkers for early diagnosis of sepsis in order to improve their survival. Methods: We analyzed differential gene expression between adult sepsis patients and controls in the GSE54514 dataset. Coexpression analysis was used to cluster coexpression modules, and enrichment analysis was performed on module genes. We also analyzed differential gene expression between neonatal sepsis patients and controls in the GSE25504 dataset, and we identified the subset of differentially expressed genes (DEGs) common to neonates and adults. All samples in the GSE54514 dataset were randomly divided into training and validation sets, and diagnostic signatures were constructed using least absolute shrink and selection operator (LASSO) regression.


Facial recognition for pigs: Is it helping Chinese farmers or hurting the poorest?

The Guardian

Like humans, pigs have idiosyncratic faces, and new players in the Chinese pork market are taking notice, experimenting with increasingly sophisticated versions of facial recognition software for pigs. China is the world's largest exporter of pork, and is set to increase production next year by 9%. As the nation's pork farms grow in scale, more farmers are turning to AI systems like facial recognition technology – known as FRT – to continuously monitor, identify, and even feed their herds. This automated style of farming has the potential to be safer, cheaper and generally more effective: In 2018, pig farmers in China's Guangxi province trialling FRT found that it slashed costs, cut down on breeding time, and improved welfare outcomes for the pigs themselves. But it also has the potential to leave behind independent, small-scale farmers, who cannot afford to introduce this kind of technology to their operations.